VALUE: Understanding Dialect Disparity in NLU

Caleb Ziems, Jiaao Chen, Camille Harris, Jessica Anderson, Diyi Yang

Georgia Institute of Technology cziems@gatech.edu

Introduction

Georgia College of

SALT

• Goal: Measure and understand dialect disparity in NLU systems

• Contributions:

- **Dialect Transformations:** 11 SAE \rightarrow AAVE transformation rules
- Validation: Robust validation of synthetic transformations + gold data from native speakers
- **VALUE:** AAVE benchmark for 7 NLU tasks
- Benchmark Evaluation: Experiments with **RoBERTA** baselines
- **Dialect-Specific Analysis:** Demonstrate specific challenges of grammatical features
- Advantages:
 - 1. **Interpretable** (not black-box)
 - 2. Flexible (tunable feature-density)
 - 3. Scalable (**mix + match** datasets)

- WORKS
- **Tech** Computing
- Validation Goal: confirm that our rules are aligned with real AAVE speakers' grammars Validation Results

RTE 192

DATA

• **Gold Standard:** if the transformation is unacceptable, annotators provide an alternative "translation"

Sentence (1): can't nothing good happen Sentence (2): nothing good can happen

Gold Set Task. **#Gold** Task. **#Gold MNLI** 656 **SST-2** 151 **QNLI** 663 **STS-B** 264 **QQP** 669 **WNLI** 285

4. **Responsible** (participatory design)

2. Dialect Transformations

- 1. Train word2vec on: **TwitterAAE** dataset
- 2. Linguistic code axis:

$$\mathbf{c} = \sum_{(\mathbf{x_i}, \mathbf{y_i}) \in S} rac{\mathbf{x_i} - \mathbf{y_i}}{|S|}$$

- 3. Rank candidate word pairs by: $\cos\left(\mathbf{c}, \mathbf{w_i} - \mathbf{w_j}\right)$
- 4. Hand-filter any semantically

SAE	AAVE
arguing	beefing, beefin, arguin
anymore	nomore, nomo
classy	fly
rad	dope
screaming	screamin, yellin, hollerin
these	dese dem

- 5. Benchmarking
 - Base RoBERTa performance drops on full AAVE set
 - In-domain training helps models start to move towards closing the performance gap
 - We need more dialect-robust NLU systems

Train	Test	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
CoLA: GLU	E	56.3	55.6	-
MNLI: GLU	E	83.6	82.5	82.1
QNLI: GLU	E	92.8	91.4	91.2
RTE: GLUE		66.4	67.8	67.6
SST-2: GLU	JE	94.6	92.4	92.0
STS-B: GLU	JE	89.4	88.5	88.2
QQP: GLUE		90.9	89.5	89.2

unequal words

these	
with	wit

3. **VALUE** Statistics

Dataset	# data	aux	been	dey/it	got	lexical	neg cncrd	null gen	null relcl	uninflect
CoLA	1,063	15%	6%	2%	2%	51%	4%	3%	3%	17%
MNLI	9,682	20%	9%	4%	5%	69%	4%	11%	10%	23%
QNLI	5,725	42%	2%	1%	3%	50%	1%	10%	4%	17%
QQP	390,690	2%	3%	63%	3%	59%	1%	3%	3%	13%
RTE	3,029	40%	36%	3%	5%	81%	4%	28%	25	40%
SST-2	1,821	25%	5%	3%	4%	64%	4%	14%	15%	39%
STS-B	1,894	~ 0	32%	2%	3%	2%	9%	4%	2%	5%
WNLI	146	36%	38%	3%	16%	90%	1%	37%	12%	33%

6. Conclusion

Limitations

- 1. VALUE should not be considered natural AAVE
 - \rightarrow Exaggerated feature density [stress test]
- 2. Speech \neq orthography
- 3. Synthetic test does not prove real-world readiness
- 4. Misuse: hateful speech and appropriation

Future Work

- 1. Extend Scope: Consider other tasks
- 2. Extend Impact: Reach other dialects
- 3. **Build:** Dialect-Aware NLP

