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Cyberbullying is a growing public health
problem.
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Exclusively human moderation is infeasible.
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Existing Cyberbullying Datasets

Work Source Size  Balance Context
Al-garadi et al. [1] Twitter 10,007 6.0% X
Chatzakou et al. |3] Twitter 9,484 - v

Hosseinmardi et al. [11|] Instagram 1,954 29.0% v
Huang et al. [13] Twitter 4,865 1.9% X
Reynolds et al. [26] Formspring 3,915 14.2% X
Rosa et al. [27] Formspring 13,160  19.4% X
Sugandhi et al. [34] Mixed 3,279 12.0% X
Van Hee et al. [35] AskFM 113,698  4.7% v
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Defining Cyberbullying

®

8la

& 5 G

. @

| ..



Defining Cyberbullying

© =X

| RGGR
2 @

N

8ls




Defining Cyberbullying

© =X

AGGR |
% @

R

e

|




Defining Cyberbullying

91 {%
® @

R

8ls

|




Defining Cyberbullying

& %

AGGR } [ HARM J
% &
{ REP J [ PEER }

8ls

|




Defining Cyberbullying

& %

AGGR | - ARM |
2
Rep | - pERR |

|




Curating a Comprehensive
Cyberbullying Dataset



Data Collection

Q (8]

1.3 million 280,301 9,803 6,897

Tweets

[8] Davidson et al. 2017
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Analysis of Labeled Data
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Feature Engineering
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Social Network Features
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Social Network Features
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Timeline Features

downward mentions
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mention overlap

upward mentions
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Timeline Features

timeline similarity

Hom) = =3 log P(b)

new words ratio linguistic surprise



Thread Visibility Features
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Thread Aggression Features
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Experimental Evaluation
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Feature Combinations

Feature BoW  Text User Proposed Combined

n-grams v v

LIWC, VADER, Flesch-Kincaid v

Friend /following counts, tweet count, verified

Neighborhood overlap measures

Mention counts and overlaps

Timeline similarity

NSINNN S

New words ratio, cross-entropy

Thread visibility features

NN NN NS
NINNIN NN NSNS

Thread aggression features




Model Evaluation
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Limitations
e Bias
o Sampling bias [imperfect aggressive tweet filter]

o Algorithmic bias  [class imbalance]
e Subjectivity in the labeling process
o low inter-rater agreement
o harmful intent and power imbalance may depend on
conventions or norms of a particular community
e Correlation, not implication
o [cyberbullying] ¢ [cyberbullying criteria]
o Cyberbullying still hasn’t been unambiguously defined

Cyberbullying detection remains an open research problem
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Low Inter-Annotator Agreement

Table R.1: Inter-annotator agreement of Mechanical Turk workers on comments sourced from the /r/MTurk
subreddit. These scores are lower than those obtained from our Twitter dataset.

Criterion | Positive Inter-annotator Cyberbullying

Balance Agreement Correlation
aggression 69.0% 0.07 0.34
repetition 7.1% 0.21 0.53
harmful intent 17.8% 0.43 0.73
visibility among peers 48.2% 0.03 0.17
target power 2.0% 0.03 0.12
author power 1.0% 0.03 0.17
equal power 94.9% 0.05 -0.20

cyberbullying 14.7% 0.33 -




Other Classifiers

Table 17: Random Forest F}

Table 19: AdaBoost F}

Criterion ~ BoW Text User Proposed  Combined Criterion ~ BoW Text User Proposed Combined

aggression 652% 793% 56.0% 57.5% 77.9% aggression 78.6% 83.9% 71.0% 77.5% 83.9%

repetition 11.0% 10.6% 13.2% 25.8% 15.8% repetition 11.7%  5.6% 11.5% 21.6% 20.9%

harmful intent 25.6% 31.1% 46.6% 46.8% 47.7 % harmful intent 35.1% 41.6% 42.8% 45.4% 55.0%
visibility among peers  35.7% 30.8% 41.2% 46.1% 33.6% visibility among peers 34.9% 21.0% 39.1% 44.3% 37.8%
target power 47.4% 39.9% 78.4% 78.0% 72.8% target power 48.3% 42.7% 79.8% 79.6% 76.7%

Table 18: SVM F} Table 20: MLP F}

Criterion  BoW Text User Proposed Combined Criterion ~ BoW Text User Proposed Combined

aggression 16.9% 37.7% 60.9% 65.4% 42.1% aggression 72.2% 82.5%  70.7% 72.4% 81.8%

repetition 12.6% 13.0% 11.8% 24.8% 28.9% repetition  12.0%  7.6% 124%  20.7% 15.2%

harmful intent 28.1% 33.8% 45.6% 45.8% 43.3% harmful intent 35.7% 37.3% 45.0% 45.8% 41.3%
visibility among peers 44.3% 46.1% 41.4% 47.4% 28.6% visibility among peers  38.0%  27.7%  39.2% 45.5% 31.4%
target power 52.0% 35.8% 14.1% 75.4% 63.1% target power  48.2% 41.0% 75.4% 74.0% 67.0%




Real-World Class Distribution

Criterion | Positive Inter-annotator Cyberbullying
Balance Agreement Correlation
aggression 6.3% 0.23 0.68
repetition 0.9% 0.04 0.46
harmful intent 1.4% 0.31 0.75
visibility among peers 0.17% 0.51 0.11
target power 22.5% 0.23 0.11
author power 3.6% 0.04 0.06
equal power 64.7% 0.15 -0.14
cyberbullying 2.7% 0.25 -




Detection at the Intersection of Criteria

Cyberbullying Criteria ~ BoW Text  User Proposed Combined

AGGR, REP  10.3% 78% 13.8% 26.6% 26.5%

AGGR, HARM  34.5% 473% 43.4% 44 4% 54.3%

AGGR, PEER  25.0% 21.7% 34.0% 38.3% 30.0%

AGGR, POWER 38.3% 39.1% 67.5% 67.8% 65.4%

REP, HARM 5.8% 5.2% 7.7% 15.0% 13.8%

REP, PEER 1.9% 2.9% 5.2% 10.8% 4.7%

REP, POWER 2.4% 42% 10.3% 9.9% 12.1%

HARM, PEER  10.5% 13.8% 17.5% 17.9% 20.5%

HARM, POWER 20.6% 37.0% 49.8% 49.4% 55.8%

PEER, POWER 152% 104% 34.4% 33.2% 23.3%

AGGR, REP, HARM 5.8% 5.2% 7.7% 15.0% 13.8%

AGGR, REP, PEER 37% 0.9% 5.0% 10.8% 3.5%

AGGR, REP, POWER 53% 4.4% 9.6% 9.7% 9.8%
AGGR, HARM, PEER 93% 183% 18.3% 19.5% 25.5%
AGGR, HARM, POWER  23.6% 349% 49.8% 49.2% 56.4%
AGGR, PEER, POWER 11.1% 11.5% 31.9% 29.7% 19.1%

REP, HARM, PEER 1.9%  4.8% 3.0% 6.6% 10.0%

REP, HARM, POWER 2.4% 4.0% 10.2% 9.9% 6.8%

REP, PEER, POWER 09% 0.0%  4.5% 4.1% 0.0%
HARM, PEER, POWER 7.5% 16.8% 16.8% 16.3% 22.4%
AGGR, REP, HARM, PEER 1.9%  4.8% 3.0% 6.6% 10.0%
AGGR, REP, HARM, POWER 24% 4.0% 10.2% 9.9% 6.8%
AGGR, REP, PEER, POWER 09% 00% 4.5% 4.1% 0.0%
AGGR, HARM, PEER, POWER 82% 154% 16.0% 15.7% 20.6%
REP, HARM, PEER, POWER 0.0%  0.0% 3.9% 4.7% 0.0%

AGGR, REP, HARM, PEER, POWER 0.0% 0.0% 3.9% 4.7% 0.0%



