Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining Representations for Cyberbullying Classification

Caleb Ziems

Emory University

Ymir Vigfusson

Emory University

Fred Morstatter

USC ISI

Cyberbullying is a growing **public health** problem.

Exclusively human moderation is infeasible.

$$f\left(w_1 \times \boxed{f^*ck} + w_2 \times \boxed{idiot} + \ldots + w_n \times \boxed{b^*tch}\right) = \boxed{}$$

$$f\left(w_1 \times \left[\mathsf{f^*ck}\right] + w_2 \times \left[\mathsf{idiot}\right] + \ldots + w_n \times \left[\mathsf{b^*tch}\right]\right)$$

$$f\left(w_1\times \left(\begin{array}{c} \text{(f*ck,} \\ \text{you)} \end{array}\right) + w_2\times \left(\begin{array}{c} \text{(an, idiot)} \\ + \ldots + w_n \times \left(\begin{array}{c} \text{(b*tch,} \\ \text{face)} \end{array}\right) \right) = \mathbf{y}^{\text{(b*tch,})}$$

$$f\left(w_1 \times \left[\mathsf{f^*ck}\right] + w_2 \times \left[\mathsf{idiot}\right] + \ldots + w_n \times \left[\mathsf{b^*tch}\right]\right)$$

$$f\left(w_1 imes \underbrace{\begin{pmatrix} \text{(f*ck,} \\ \text{you)} \end{pmatrix}} + w_2 imes \underbrace{\begin{pmatrix} \text{(an, idiot)} \end{pmatrix}} + \ldots + w_n imes \underbrace{\begin{pmatrix} \text{(b*tch,} \\ \text{face)} \end{pmatrix}} \right)$$

$$f\bigg(w_1\times \boxed{\text{affect}} + w_2\times \boxed{\text{bio}} + \ldots + w_n\times \boxed{\text{negemo}}\bigg) = \boxed{\bullet}$$

LIWC

```
* affective processes : {happy, cried}
```

* biological processes : {eat, blood, pain}

* negative emotion : {hurt, ugly, nasty}

$$f\left(w_1 \times \boxed{\text{affect}} + w_2 \times \boxed{\text{bio}} + \ldots + w_n \times \boxed{\text{negemo}}\right) = \boxed{}$$

```
thicklimit * the control of the
```

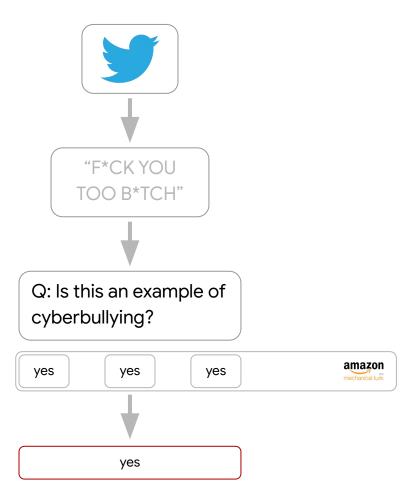
* negative emotion : {hurt, ugly, nasty}

$$f\left(w_1 \times \boxed{\text{affect}} + w_2 \times \boxed{\text{bio}} + \ldots + w_n \times \boxed{\text{negemo}}\right) = ?$$

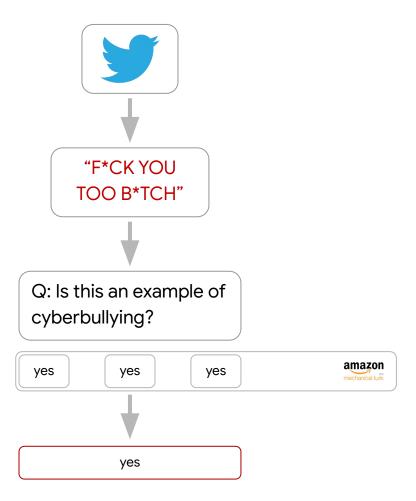
Existing Cyberbullying Datasets

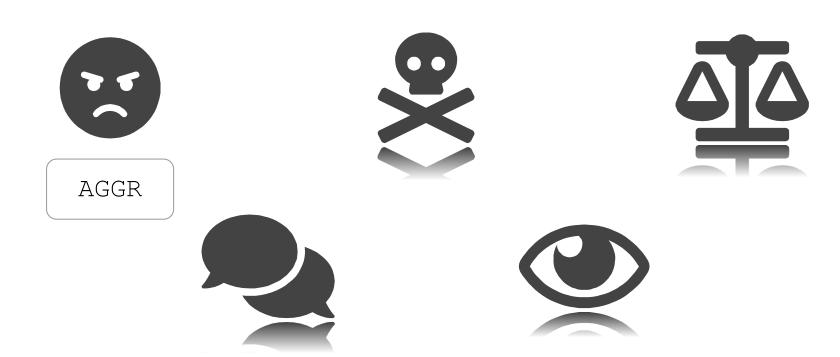
Work	Source	Size	Balance	Context
Al-garadi et al. [1]	Twitter	10,007	6.0%	X
Chatzakou et al. [3]	Twitter	9,484	9 <u>~</u>	✓
Hosseinmardi et al. [11]	Instagram	1,954	29.0%	1
Huang et al. [13]	Twitter	4,865	1.9%	X
Reynolds et al. [26]	Formspring	3,915	14.2%	X
Rosa et al. [27]	Formspring	13,160	19.4%	X
Sugandhi et al. [34]	Mixed	3,279	12.0%	X
Van Hee et al. [35]	AskFM	113,698	4.7%	√

Ground Truth?



Ground Truth?





AGGR

REP

AGGR

HARM

REP

AGGR

HARM

REP

PEER

AGGR

HARM

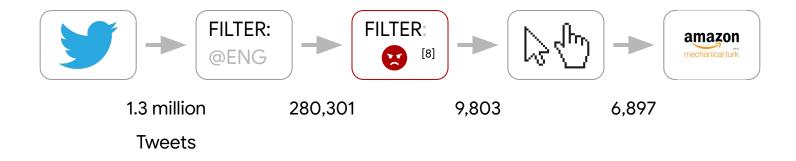
POWER

REP

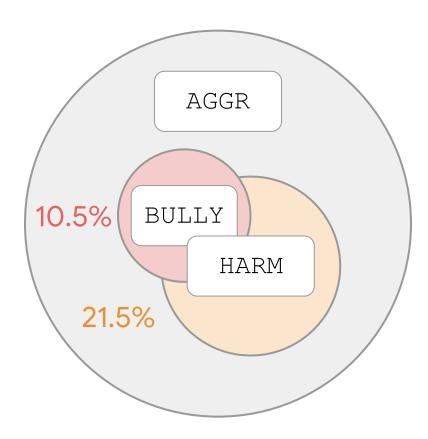
PEER

Curating a Comprehensive Cyberbullying Dataset

Data Collection



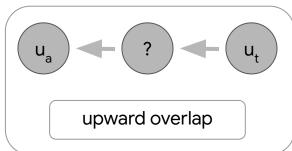
Analysis of Labeled Data

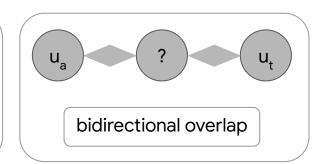


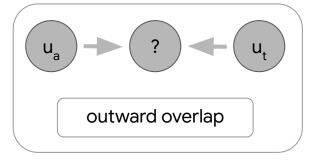
Feature Engineering

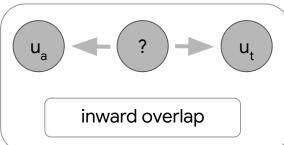
Social Network Features





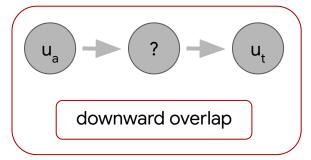


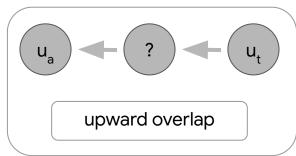


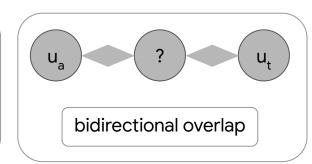


$$\mathbf{overlap}(u_a, u_t) := \frac{|N(u_a) \cap N(u_t)|}{|N(u_a) \cup N(u_t)|}$$

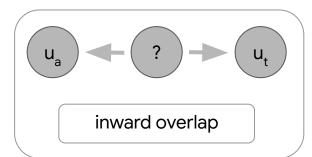
Social Network Features







outward overlap



$$\mathbf{overlap}(u_a, u_t) := \frac{|N(u_a) \cap N(u_t)|}{|N(u_a) \cup N(u_t)|}$$

Timeline Features

auth -> targ

downward mentions

targ -> auth

upward mentions

 $\frac{|M_a \cap M_t|}{|M_a \cup M_t|}$

mention overlap

Timeline Features

$$\cos \theta = \frac{\vec{A} \cdot \vec{T}}{\|\vec{A}\| \|\vec{T}\|}$$

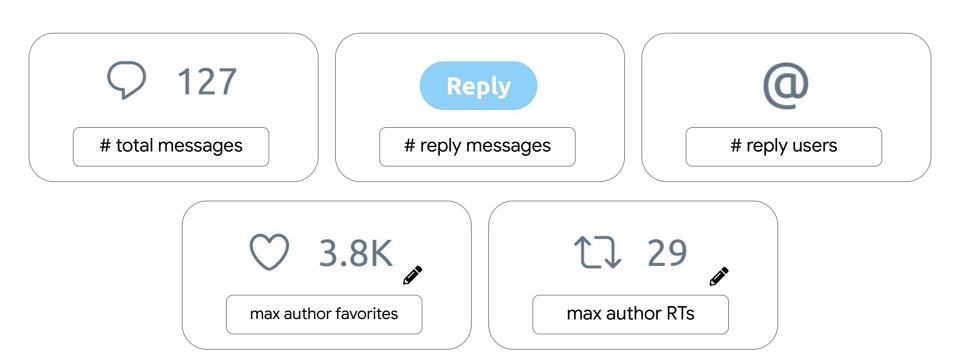
timeline similarity

new_words /
length of msg
new words ratio

$$H(m) = -\frac{1}{N} \sum_{i=1}^{N} \log P(b_i)$$

linguistic surprise

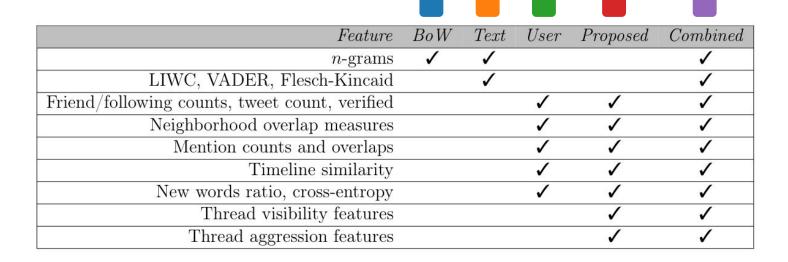
Thread Visibility Features



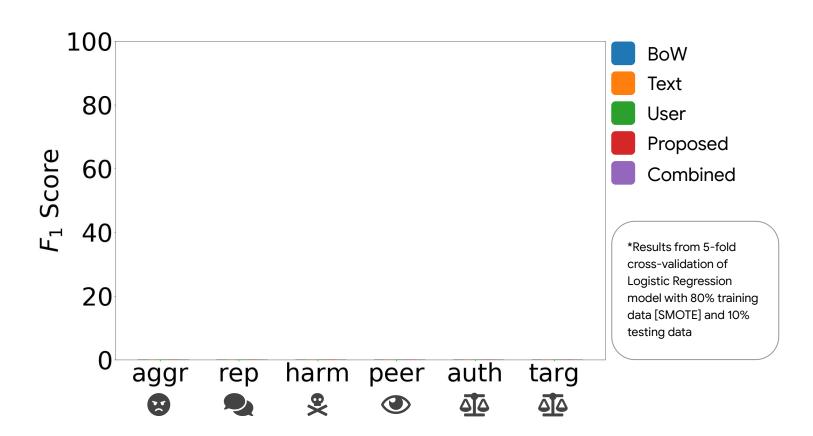
Thread Aggression Features

Experimental Evaluation

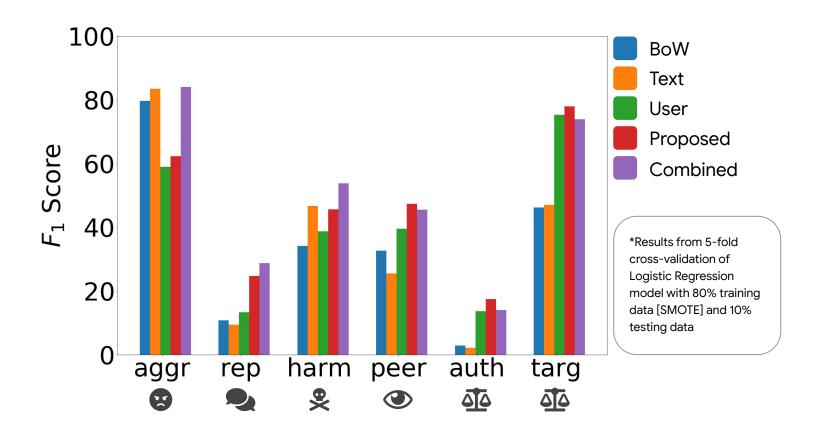
Feature Combinations



Model Evaluation



Model Evaluation



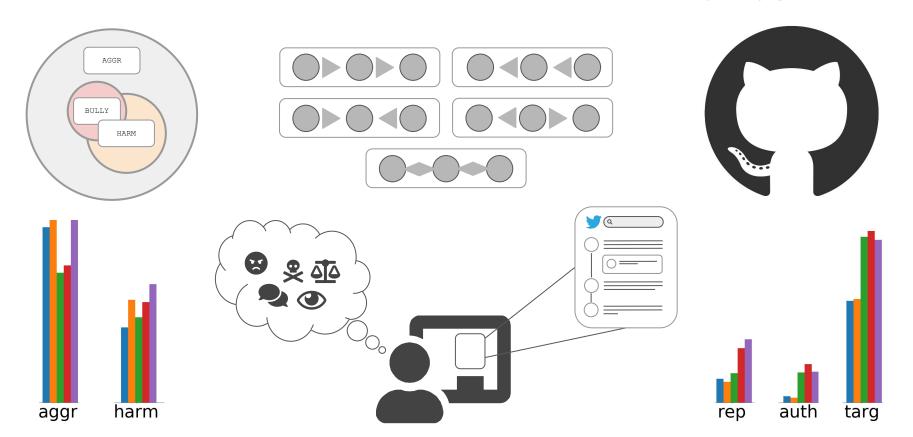
Limitations

- Bias
 - Sampling bias [imperfect aggressive tweet filter]
 - Algorithmic bias [class imbalance]
- Subjectivity in the labeling process
 - low inter-rater agreement
 - harmful intent and power imbalance may depend on conventions or norms of a particular community
- Correlation, not implication
 - [cyberbullying] (cyberbullying criteria)
 - Cyberbullying still hasn't been unambiguously defined

Cyberbullying detection remains an open research problem

Conclusion

github.com/cjziems/ cyberbullying-representations

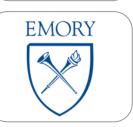


Acknowledgements

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Agreement No. HR0011890019.

The project was completed in part at the **USC** Information Sciences Institute, supported by NSF Grant No. 1659886

and at **Emory University**, supported by NSF Grant No. 1553579.



References

- Mohammed Ali Al-garadi, Kasturi Dewi Varathan, and Sri Devi Ravana. Cybercrime detection in online communications: The experimental case of cyberbullying detection in the twitter network. Computers in Human Behavior, 63: 433-443, 2016.
- [2] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text with the natural language toolkit. "O'Reilly Media, Inc.", 2009.
- [3] Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, Gianluca Stringhini, and Athena Vakali. Mean birds: Detecting aggression and bullying on twitter. In Proceedings of the 2017 ACM on web science conference, pages 13–22. ACM, 2017.
- [4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE: synthetic minority over-sampling technique. JAIR, 16:321–357, 2002.
- [5] Charalampos Chelmis, Daphney-Stavroula Zois, and Mengfan Yao. Mining patterns of cyberbullying on twitter. In ICDMW, pages 126–133. IEEE, 2017.
- [6] Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman, and Franciska de Jong. Improving cyberbullying detection with user context. In European Conference on Information Retrieval, pages 693–696. Springer, 2013.
- [7] Corinne David-Ferdon and Marci F Hertz. Electronic media and youth violence; a CDC issue brief for researchers. 2009.
- [8] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech detection and the problem of offensive language. In Eleventh International AAAI Conference on Web and Social Media, 2017.

- [9] Karthik Dinakar, Roi Reichart, and Henry Lieberman. Modeling the detection of textual cyberbullying. In fifth international AAAI conference on weblogs and social media, 2011.
- [10] Sameer Hinduja and Justin W Patchin. Cyberbullying: An exploratory analysis of factors related to offending and victimization. *Deviant behavior*, 29(2):129– 156, 2008.
- [11] Homa Hosseinmardi, Sabrina Arredondo Mattson, Rahat Ibn Rafiq, Richard Han, Qin Lv, and Shivakant Mishra. Analyzing labeled cyberbullying incidents on the instagram social network. In *International conference on social informat*ics, pages 49–66. Springer, 2015.
- [12] Homa Hosseinmardi, Rahat Ibn Rafiq, Richard Han, Qin Lv, and Shivakant Mishra. Prediction of cyberbullying incidents in a media-based social network. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 186–192. IEEE, 2016.
- [13] Qianjia Huang, Vivek Kumar Singh, and Pradeep Kumar Atrey. Cyber bullying detection using social and textual analysis. In Proceedings of the 3rd International Workshop on Socially-Aware Multimedia, pages 3–6. ACM, 2014.
- [14] Yun-yin Huang and Chien Chou. An analysis of multiple factors of cyberbullying among junior high school students in taiwan. Computers in Human Behavior, 26(6):1581–1590, 2010.
- [15] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In ICWSM, 2014.
- [16] Robin M Kowalski and Susan P Limber. Psychological, physical, and academic correlates of cyberbullying and traditional bullying. *Journal of Adolescent Health*, 53(1):S13-S20, 2013.

- [17] Qing Li. Cyberbullying in schools: A research of gender differences. School psychology international, 27(2):157-170, 2006.
- [18] Kimberly Miller. Cyberbullying and its consequences: How cyberbullying is contorting the minds of victims and bullies alike, and the law's limited available redress. S. Cal. Interdisc. LJ, 26:379, 2016.
- [19] Vinita Nahar, Xue Li, Chaoyi Pang, and Yang Zhang. Cyberbullying detection based on text-stream classification. In The 11th Australasian Data Mining Conference (AusDM 2013), 2013.
- [20] Vinita Nahar, Sanad Al-Maskari, Xue Li, and Chaoyi Pang. Semi-supervised learning for cyberbullying detection in social networks. In Australasian Database Conference, pages 160–171. Springer, 2014.
- [21] Dan Olweus. Bullying at school. In Aggressive behavior, pages 97–130. Springer, 1994.
- [22] Dan Olweus. Cyberbullying: An overrated phenomenon? European Journal of Developmental Psychology, 9(5):520-538, 2012.
- [23] James W Pennebaker, Roger J Booth, and Martha E Francis. Liwc2007: Linguistic inquiry and word count. Austin, Texas: liwc. net, 2007.
- [24] Megan Price, John Dalgleish, et al. Cyberbullying: Experiences, impacts and coping strategies as described by australian young people. Youth Studies Australia, 29(2):51, 2010.
- [25] Juliana Raskauskas and Ann D Stoltz. Involvement in traditional and electronic bullying among adolescents. Developmental psychology, 43(3):564, 2007.

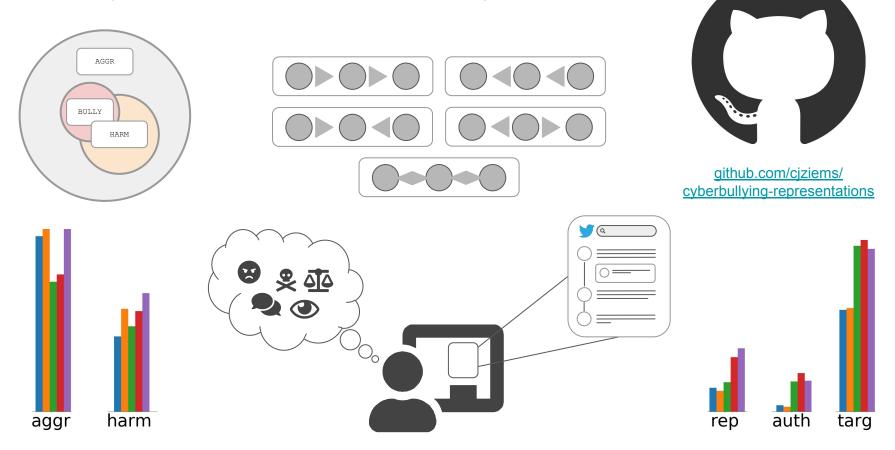
References

- [26] Kelly Reynolds, April Kontostathis, and Lynne Edwards. Using machine learning to detect cyberbullying. In 2011 10th International Conference on Machine learning and applications and workshops, volume 2, pages 241–244, IEEE, 2011.
- [27] H Rosa, N Pereira, R Ribeiro, PC Ferreira, JP Carvalho, S Oliveira, L Coheur, P Paulino, AM Veiga Simão, and I Trancoso. Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93:333-345, 2019.
- [28] Semiu Salawu, Yulan He, and Joanna Lumsden. Approaches to automated detection of cyberbullying: A survey. IEEE Transactions on Affective Computing, 2017.
- [29] Hugues Sampasa-Kanyinga, Paul Roumeliotis, and Hao Xu. Associations between cyberbullying and school bullying victimization and suicidal ideation, plans and attempts among canadian schoolchildren. PloS one, 9(7):e102145, 2014.
- [30] Vivek K Singh, Qianjia Huang, and Pradeep K Atrey. Cyberbullying detection using probabilistic socio-textual information fusion. In Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages 884–887. IEEE Press, 2016.
- [31] Robert Slonje and Peter K Smith. Cyberbullying: Another main type of bullying? Scandinavian journal of psychology, 49(2):147-154, 2008.
- [32] Robert Slonje, Peter K Smith, and Ann Frisén. The nature of cyberbullying, and strategies for prevention. Computers in human behavior, 29(1):26-32, 2013.
- [33] Devin Soni and Vivek Singh. Time reveals all wounds: Modeling temporal characteristics of cyberbullying. In Twelfth International AAAI Conference on Web and Social Media, 2018.

- [34] Rekha Sugandhi, Anurag Pande, Abhishek Agrawal, and Husen Bhagat. Automatic monitoring and prevention of cyberbullying. *International Journal of Computer Applications*, 8:17–19, 2016.
- [35] Cynthia Van Hee, Gilles Jacobs, Chris Emmery, Bart Desmet, Els Lefever, Ben Verhoeven, Guy De Pauw, Walter Daelemans, and Véronique Hoste. Automatic detection of cyberbullying in social media text. PloS one, 13(10):e0203794, 2018.
- [36] Tracy E Waasdorp and Catherine P Bradshaw. The overlap between cyberbullying and traditional bullying. *Journal of Adolescent Health*, 56(5):483–488, 2015.
- [37] Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy Bellmore. Learning from bullying traces in social media. In Proceedings of the 2012 conference of the North American chapter of the association for computational linguistics: Human language technologies, pages 656–666. Association for Computational Linguistics, 2012.
- [38] Mengfan Yao, Charalampos Chelmis, Daphney Zois, et al. Cyberbullying ends here: Towards robust detection of cyberbullying in social media. In *The World Wide Web Conference*, pages 3427–3433. ACM, 2019.
- [39] Xiang Zhang, Jonathan Tong, Nishant Vishwamitra, Elizabeth Whittaker, Joseph P Mazer, Robin Kowalski, Hongxin Hu, Feng Luo, Jamie Macbeth, and Edward Dillon. Cyberbullying detection with a pronunciation based convolutional neural network. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 740–745. IEEE, 2016.

[40] Rui Zhao, Anna Zhou, and Kezhi Mao. Automatic detection of cyberbullying on social networks based on bullying features. In Proceedings of the 17th international conference on distributed computing and networking, page 43. ACM, 2016.

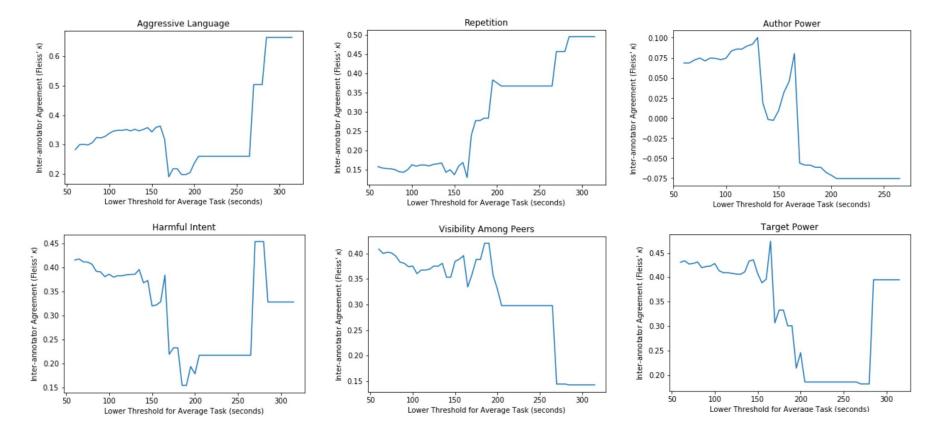
[Refining Representations for Cyberbullying Classification]



Spotlight Session II Q&A

Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining Representations for Cyberbullying Classification

Low Inter-Annotator Agreement



Low Inter-Annotator Agreement

Table R.1: Inter-annotator agreement of Mechanical Turk workers on comments sourced from the /r/MTurk subreddit. These scores are lower than those obtained from our Twitter dataset.

Criterion	Positive Balance	Inter-annotator Agreement	Cyberbullying Correlation
aggression	69.0%	0.07	0.34
repetition	7.1%	0.21	0.53
harmful intent	17.8%	0.43	0.73
visibility among peers	48.2%	0.03	0.17
target power	2.0%	0.03	0.12
author power	1.0%	0.03	0.17
equal power	94.9%	0.05	-0.20
cyberbullying	14.7%	0.33	1=1

Other Classifiers

Table 17: Random Forest F_1

Criterion	BoW	Text	User	Proposed	Combined
aggression	65.2%	79.3%	56.0%	57.5%	77.9%
repetition	11.0%	10.6%	13.2%	25.8%	15.8%
harmful intent	25.6%	31.1%	46.6%	46.8%	47.7%
visibility among peers	35.7%	30.8%	41.2%	46.1%	33.6%
target power	47.4%	39.9%	78.4%	78.0%	72.8%

Table 19: AdaBoost F_1

Criterion	BoW	Text	User	Proposed	Combined
aggression	78.6%	83.9%	71.0%	77.5%	83.9%
repetition	11.7%	5.6%	11.5%	21.6%	20.9%
harmful intent	35.1%	41.6%	42.8%	45.4%	55.0%
visibility among peers	34.9%	21.0%	39.1%	44.3%	37.8%
target power	48.3%	42.7%	79.8%	79.6%	76.7%

Table 18: SVM F_1

Criterion	BoW	Text	User	Proposed	Combined
aggression	16.9%	37.7%	60.9%	65.4%	42.1%
repetition	12.6%	13.0%	11.8%	24.8%	28.9%
harmful intent	28.1%	33.8%	45.6%	45.8%	43.3%
visibility among peers	44.3%	46.1%	41.4%	47.4%	28.6%
target power	52.0%	35.8%	74.1%	75.4%	63.1%

Table 20: MLP F_1

Criterion	BoW	Text	User	Proposed	Combined
aggression	72.2%	82.5%	70.7%	72.4%	81.8%
repetition	12.0%	7.6%	12.4%	20.7%	15.2%
harmful intent	35.7%	37.3%	45.0%	45.8%	41.3%
visibility among peers	38.0%	27.7%	39.2%	45.5%	31.4%
target power	48.2%	41.0%	75.4%	74.0%	67.0%

Real-World Class Distribution

Criterion	Positive	Inter-annotator	Cyberbullying
	Balance	Agreement	Correlation
aggression	6.3%	0.23	0.68
repetition	0.9%	0.04	0.46
harmful intent	1.4%	0.31	0.75
visibility among peers	0.17%	0.51	0.11
target power	22.5%	0.23	0.11
author power	3.6%	0.04	0.06
equal power	64.7%	0.15	-0.14
cyberbullying	2.7%	0.25	-

Detection at the Intersection of Criteria

Cyberbullying Criteria	BoW	Text	User	Proposed	Combined
AGGR, REP	10.3%	7.8%	13.8%	26.6%	26.5%
AGGR, HARM	34.5%	47.3%	43.4%	44.4%	54.3%
AGGR, PEER	25.0%	21.7%	34.0%	38.3%	30.0%
AGGR, POWER	38.3%	39.1%	67.5%	67.8%	65.4%
REP, HARM	5.8%	5.2%	7.7%	15.0%	13.8%
REP, PEER	1.9%	2.9%	5.2%	10.8%	4.7%
REP, POWER	2.4%	4.2%	10.3%	9.9%	12.1%
HARM, PEER	10.5%	13.8%	17.5%	17.9%	20.5%
HARM, POWER	20.6%	37.0%	49.8%	49.4%	55.8%
PEER, POWER	15.2%	10.4%	34.4%	33.2%	23.3%
AGGR, REP, HARM	5.8%	5.2%	7.7%	15.0%	13.8%
AGGR, REP, PEER	3.7%	0.9%	5.0%	10.8%	3.5%
AGGR, REP, POWER	5.3%	4.4%	9.6%	9.7%	9.8%
AGGR, HARM, PEER	9.3%	18.3%	18.3%	19.5%	25.5%
AGGR, HARM, POWER	23.6%	34.9%	49.8%	49.2%	56.4%
AGGR, PEER, POWER	11.1%	11.5%	31.9%	29.7%	19.1%
REP, HARM, PEER	1.9%	4.8%	3.0%	6.6%	10.0%
REP, HARM, POWER	2.4%	4.0%	10.2%	9.9%	6.8%
REP, PEER, POWER	0.9%	0.0%	4.5%	4.1%	0.0%
HARM, PEER, POWER	7.5%	16.8%	16.8%	16.3%	22.4%
AGGR, REP, HARM, PEER	1.9%	4.8%	3.0%	6.6%	10.0%
AGGR, REP, HARM, POWER	2.4%	4.0%	10.2%	9.9%	6.8%
AGGR, REP, PEER, POWER	0.9%	0.0%	4.5%	4.1%	0.0%
AGGR, HARM, PEER, POWER	8.2%	15.4%	16.0%	15.7%	20.6%
REP, HARM, PEER, POWER	0.0%	0.0%	3.9%	4.7%	0.0%
AGGR, REP, HARM, PEER, POWER	0.0%	0.0%	3.9%	4.7%	0.0%