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Introduction: A Benchmark for Implicit Hate Speech

1. Content Warning: may contain upsetting examples.
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Q} Target: {Black folks, Muslim folks, Non-whites}

@ Implied Statement: <targets> {do, are, commit} <predicate>

e.g. “"Mexicans aré incompetent”



3. Baseline Classifiers for Detecting Implicit Hate /I

SVM (n-grams)

SVM (TF-1IDF)

SVM (GloVe)

BERT

BERT + Aug

BERT + Aug + Wikidata
BERT + Aug + ConceptNet




Augmentation

SVM (n-grams)

SVM (TF-1IDF)

SVM (GloVe)

BERT

[BERT + Aug |

BERT + Aug + Wikidata
BERT + Aug + ConceptNet

4 O

4 O

HeHaBWCTb MCXxoQuT OT
paamKanbHbIX NCIIaMCKMX
oxnxaguctos. [NocmoTpute
Ha EC. OHun ybuBaoT My»>X4mH,

XXEHLUWH 1 JeTel, Bcex
\ HEBUHHBIX.

\_

A
—

3. Baseline Classifiers for Detecting Implicit Hate /I

Hate is from radical Islamic
jihadists. Look at the EU. They kill
men women and children all
innocents.

The hatred of radical Islamic
jihadists is directed at men,
women, and children, all of whom
are innocent.

~

N\
/
Hatred comes from radical

jihadists who kill innocent men,
women, and children.

\_

J
~

J
~

The hatred of radical Islamic
jihadists goes so far that they kill
men, women and children, all
innocents.

J




3. Baseline Classifiers for Detecting Implicit Hate
" INRIIHIN]

WIKIDATA

BERT String-match
WikiData (12L ) entities to KG
Ve embeddings

SVM (n-grams) —

SVM (TF-IDF)
SVM (GloVe) @
BERT
BERT + Aug 512 |+ Concatenate
[BERT + Aug + Wikidata | @
BERT + Aug + ConceptNet

2-Layer MLP

| Output




3. Baseline Classifiers for Detecting Implicit Hate

ConceptNet

SVM (n-grams)

SVM (TF-IDF)

SVM (GloVe)

BERT

BERT + Aug

BERT + Aug + Wikidata
[BERT + Aug + ConceptNet ]

BERT

(12 Layers)

[512

O
5 ConceptNet

String-match
== entities to KG
embeddings

| Concatenate

2-Layer MLP

Output




3. Baseline Classifiers for Detecting Implicit Hate

Models

SVM (n-grams)

SVM (TF-1IDF)

SVM (GloVe)

BERT

BERT + Aug

BERT + Aug + Wikidata
BERT + Aug + ConceptNet




3. Baseline Classifiers for Detecting Implicit Hate

Binary Classification

Implicit Hate Categories

Models P R B Acc P R F Acc
Hate Sonar 399 48,6 438 54.6 - - - -

Perspective API 50.1 613 552  63.7 - - - -

SVM (n-grams) 614 677 644 727 48.8 492 484 542
SVM (TF-IDF) 595 688 639 716 53.0 517 515 565
SVM (GloVe) 565 653 606 69.0 46.8 489 463 513
BERT 721 660 689 783 591 579 580 629
BERT + Aug 67.8 732 704 775 586 591 586 638
BERT + Aug + Wikidata 616 723 699 713 539 553 544 628
BERT + Aug + ConceptNet 68.6 70.0 693 774 540 554 543 625
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4. Generative LMs for Explaining Implicit Hate

Target Group {:} Implied Statement @
Models BLEU BLEU* Rouge-L. Rouge-L* BLEU BLEU* Rouge-LL Rouge-L*
GPT-gdy 43.7 65.2 42.9 63.3 41.1 58.2 31 45.3
GPT-top-p 57.7 76.8 55.8 74.6 55.2 69.4 40 53.9
GPT-beam  59.3 81 57.3 78.6 57.8 73.8 46.5 63.4
GPT-2-gdy 45.3 67.6 44.6 66 42.3 59.3 32.7 47.4
GPT-2-top-p  58.0 76.9 56,2 74.8 35.1 69.3 39.6 5.4

GPT-2-beam  61.3 83.9 59.6 81.8 58.9 753 48.3 65.9
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Post Type Target Group Implied Statement

. L . - non-white people non-white people are inferior
(a) white revolution is the only solution incitement : : :

white people white people are superior to other races
(b) yes you are fine in a white majority country. how is mexico doing these days? people mexican people  mexican people do not build things
come here because you couldn’t build it. inferiority mexicans mexicans are incompetent
5 0 ; black people black people are inferior

(c) black people only seem to thrive in white . peop peap ; y ’

: irony black people can’t survive without
countries. how strange black people ;

white people
(d) soon white people will not be a majority — whites whites have been driven out of the country
anywhere. you believe & minorities minorities want to take over the world
(e) muslims are always wanting to kill . muslims muslims are killers
: ! i ; stereotypical ; 3 i
someone! its their duty to kill the infidel. muslims muslims are violent
oh how i wish a man with a gun was ! white people white people are hated

® £ threatening peop peop

there! wake up white people! they hate us

non-whites

non-whites hate whites

Table 5: Example posts from our dataset along with their implicit category labels, the GPT-2 generated target and
implied statements (first row of each block), and the ground truth target and implied statements (final row of each
block, in italics). Generated implied statements are semantically similar to the ground truth statements.



View instructions

${tweet_text}
Does this text attack a person or a group of people, explicitly or implicitly, based on their protected characteristics?

O Yes, explicit hate speech
O Yes, implicit hate speech
O Not hate speech

Tip: Explicit hate speech uses explicit hatred expressions or offensive keywords such as n*gger, c*nt, etc. to attack a person or a group of people based on their protected characteristics.
Implicit hate speech is a more complex attack on a person or a group of people without relying on explicit keywords. Beware that implicit discriminatory speech may be subtle.
Protected characteristics include ethnicity, race, national origin, religion, sex, gender, and sexual orientation. Note that pointing out racism should not be considered as hate speech.

Figure 2: Amazon Mechanical Turk interface used to collect ternary annotations (explicit hate, implicit hate, and
not hate) for our first stage.




${tweet_text}

The following tweet has been categorized as "implicit hate speech" in a prior labeling stage; a more complex and subtle attack on a person or a group of people based on their protected
characteristics without relying on explicit keywords.

The goal of the task is to infer both the targeted group (GROUP) and what the post is actually implying about that group.

Step 1: The targeted group might be ethnicity, religion, class, or sexually oriented-related among other characteristics such as immigration.

Step 2: The second step in this task would be to determine what is really implied by the post. For this section, we ask you to write structured language, using the group identified in the prior step, such as
(GROUP do/does , GROUP are , GROUP Kill , GROUP have , GROUP commit

Q1) Which group of people does this post refer to? (GROUP)

| /,

Example of answers are: black folks, asian folks, muslims, jews, latino/latina folks, immigrants, etc.

Q2) What aspect/stereotype/characteristic of this group is referenced or implied by the post? -- Use simple phrases and do not copy paste from the post.

‘ )

Use the GROUP identified in the previous question to form a simple phrase and DO NOT COPY PASTE from the post. Examples of simple phrases include but are not limited to: GROUP do/does _____, GROUP are , GROUP Kill
GROUP have , GROUP commit
Examples of common stereotypes include: Women are ***, Immigrants take ***, Muslims kill ***, Liberals are ***

Figure 3: Amazon Mechanical Turk interface used to collect the hate target and the implied statement per implicit
hate speech post.



Macro Grievance Incitement Inferiority

P R F Acc P R F P R K P R F
SVM (n-grams) 488 492 484 542 65.6 53.6 59.0 53.7 558 547 49.7 464 480
SVM (TF-IDF) 530 517 515 565 66.9 56.7 614 604 56.2 582 46.0 453 456
SVM (GloVe) 46.8 489 463 513 63.7 48.6 55.1 55.2 46.7 50.6 458 39.7 425
BERT 59.1 579 580 629 654 639 64.6 624 56.6 594 654 579 614
BERT + Aug 58.6 59.1 58.6 63.8 67.6 65.7 66.6 66.8 56.5 61.2 61.0, ;59.0 " 599
BERT + Aug + Wikidata 539 553 544 628 68.8 63.0 65.8 62.7 559 59.1 60.3 60.8 60.4
BERT + Aug + ConceptNet 54.0 554 543 625 67.6 649 66.2 63.8 527 577 62.1 57.7° 59.7
Irony Stereotypical Threatening
P R F P R F P R E
SVM (n-grams) 414 518 460 60.7 527 564 520 722 605
SVM (TF-IDF) 439 554 489 60.9 58.8 59.8 553 "722 627
SVM (GloVe) 48.7 554 518 59.3 53.9: 565 502 743 599
BERT 62.3 63.8 63.0 585 693 634 67.2 715 693
BERT + Aug 620 623 62.1 62.0 70.1 65.8 65.0 75.6 69.8
BERT + Aug + Wikidata 60.0 63.1 614 60.7 693 64.7 642 738 68.6
BERT + Aug + Conceptnet  61.5 63.3 623 59.1 70.0 64.0 62.4 747 679

Table 6: Fine-grained implicit hate classification performance, averaged across five random seeds. Macro scores
are further broken down into category-level scores for each of the six main implicit categories, and we omit scores
for other. Again, the BERT-based models beat the linear SVMs on F performance across all categories. Generally,
augmentation improves recall, especially for two of the minority classes, inferiority and threatening, as expected.
Knowledge graph integration (Wikidata, Conceptnet) does not appear to improve the performance.



White Nationalist Neo-Nazi A-Immgr A-MUS A-LGBTQ KKK
identity adolf immigration islam potus ku

N evropa bjp sanctuary jihad democrats klux

ouns g i g . "

(N) activists mdla} aliens 1slamlc trump l_xood
alt-right modi border muslim(s) abortion niggas
whites invaders cities sharia dumbocrats brother
white more illegal muslim black alive

Adiecti hispanic non-white immigrant political crooked edgy

jectives oy 2 . :

(A) antl-yvhlte _german dangerous 1s!amlc confederate white
third national-socialist ice migrant fake outed
racial white criminal moderate racist anonymous

#projectsiege #swrm #noamnesty #billwarnerphd #defundpp #opkkk

Hishitigs #antifa #workingclass #immigration #stopislam #pjnet #hoodsoff

( #)“ 3 #berkrally #hitler t#afire #makedclisten  #unbornlivesmatter ~ #mantears
#altright #freedom #fairblog #bansharia #religiousfreedom #kkk

#endimmigration #wpww #stopsanctuarycities #espi #prolife #anonymous

Table 7: Top five salient nouns, adjectives, and hashtags identified by measuring the log odds ratio informative
Dirichlet prior (Monroe et al., 2008) for the following ideologies: White Nationalist, Neo-Nazi, Anti-Immigrant

(A-Immgr), Anti-Muslim (A-MUS), Anti-LGBTQ (A-LGBTQ), and Ku Klux Klan (KKK).



2.

Implicit Hate Benchmark Dataset
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