Can Large Language Models Transform Computational Social Science?

Caleb Ziems†*, William Held✦*, Omar Shaikh†*, Jiaao Chen✦*, Zhehao Zhang‡*, Diyi Yang†

* All heavily contributed to the implementation of this work

† Stanford ✦ Georgia Tech ‡ Dartmouth
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist's toolkit?

- Psychology
- Political Science
- Literature
- History
- Sociology
- Linguistics
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

(Supervised) Text Classification
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

(Supervised) Text Classification

(Unsupervised) Text Clustering
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

- (Supervised) Text Classification
- (Unsupervised) Text Clustering
- (Semi-supervised) Natural Language Generation
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

1. Viability
2. Model-Selection
3. Domain-Utility
4. Functionality
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

1. Viability
2. Model-Selection
3. Domain-Utility
4. Functionality
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

1. Viability
2. Model-Selection
3. Domain-Utility
4. Functionality
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

1. Viability
2. Model-Selection
3. Domain-Utility
4. Functionality
RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

- politeness recognition
- humor recognition
- emotion recognition
- empathy classification
- stance detection
- ideology detection
- agent framing
- relationship dynamics
- event extraction
- power relations identification
- social role detection
- dialect feature identification

Psychology

Political Science

Literature

History

Sociology

Linguistics
Research Questions

RQ: Are LLMs useful tools in the Computational Social Scientist’s toolkit?

<table>
<thead>
<tr>
<th>Psychology</th>
<th>Political Science</th>
<th>Literature</th>
<th>History</th>
<th>Sociology</th>
<th>Linguistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politeness recognition</td>
<td>Stance detection</td>
<td>Agent framing</td>
<td>Event extraction</td>
<td>Power relations identification</td>
<td>Dialect feature identification</td>
</tr>
<tr>
<td>Humor recognition</td>
<td>Ideology detection</td>
<td>Relationship dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotion recognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stanford Politeness Corpus (Danescu-Niculescu-Mizil et al., 2013)

r/Jokes + Pun of the Day (Weller and Seppi 2019)

CARER (Saravia et al. 2018)

EPITOME (Sharma et al., 2020)

SemEval-2016 Stance Dataset (Mohammad et al., 2016)

Ideological Books Corpus (Gross et al., 2013)

Article Bias Corpus (Baly et al., 2013)

WikiEvents (Li et al., 2021)

Hippocorpus (Sap et al., 2020)

Wikipedia Talk Pages (Danescu-Niculescu-Mizil et al. 2012)

CMU Movie Corpus (Bamman et al. 2013)

Indian English Minimal Pairs (Demszky et al. 2019)

Psychology

Political Science

Literature

History

Sociology

Linguistics

Psychology

Political Science

Literature

History

Sociology

Linguistics

Psychology

Political Science

Literature

History

Sociology

Linguistics
RQ1: Zero-Shot Classification Performance

RQ1: Viability. Can LLMs augment the human annotation pipeline?
RQ1: Viability. Can LLMs augment the human annotation pipeline?

→ Finding: LLMs can make annotation more efficient but we still need humans in the loop.
RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

→ **Finding:** LLMs can make annotation more efficient but we still need humans in the loop.

RQ1: Zero-Shot Classification Performance
RQ1: Viability. Can LLMs augment the human annotation pipeline?

Finding: LLMs can make annotation more efficient but we still need humans in the loop.

RQ1: Zero-Shot Classification Performance
RQ1: Zero-Shot Classification Performance

RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

→ **Finding:** LLMs can make annotation more efficient **but** we still need humans in the loop
RQ1: Zero-Shot Classification Performance

RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

→ **Finding:** LLMs can make annotation more efficient **but we still need humans in the loop**
RQ2: CSS Performance Follows **Scaling Laws**

RQ2: **Model-Selection.**
RQ2: CSS Performance Follows Scaling Laws

RQ2: Model-Selection.

- **Flan-T5** (instruction-tuned)
 - small: 80M
 - base: 250M
 - large: 780M
 - XL: 3B
 - XXL: 11B
 - UL2: 20B
RQ2: Model-Selection.

GPT-3
- text-ada 350M
- text-babbage 1.3B
- text-curie 6.7B
- text-davinci 175B
 - 001
 - 002 (more / better data)
 - 003 (+ RLHF)

3.5 turbo ChatGPT
(+ dialog tuning / RLHF)

GPT-4
- 1.8T

RQ2: CSS Performance Follows Scaling Laws
RQ2: Model-Selection. How does model size, architecture and pretraining affect downstream performance on CSS tasks?

→ Findings: Performance scales with model size.
RQ2: **Model-Selection.** How does model size, architecture and pretraining affect downstream performance on CSS tasks?

<> **Findings:** Performance scales with model size
RQ2: Model-Selection. How does model size, architecture and pretraining affect downstream performance on CSS tasks?

Findings: Performance scales with model size.
RQ2: Scaling Laws – **Benefits of Open Source**

Recommendation:

What LLM to use?
RQ2: Scaling Laws – **Benefits of Open Source**

Recommendation:

What LLM to use? → Do you have labeled data already?
RQ2: Scaling Laws – Benefits of Open Source

Recommendation:

- What LLM to use?
- Do you have labeled data already?
- YES
- OPEN-SOURCE
Recommendation:

RQ2: Scaling Laws – Benefits of Open Source

What LLM to use?

Do you have labeled data already?

Do you have your own GPUs?

NO

YES

OPEN-SOURCE
RQ2: Scaling Laws – Benefits of Open Source

Recommendation:

What LLM to use?

Do you have labeled data already?

Do you have your own GPUs?

YES

OPEN-SOURCE

YES

OPEN-SOURCE

NO
RQ2: Scaling Laws – **Benefits of Open Source**

Recommendation:

- **What LLM to use?**
 - Do you have labeled data already?
 - NO
 - Do you have your own GPUs?
 - NO
 - Closed, Proprietary
 - YES
 - OPEN-SOURCE
 - YES
 - OPEN-SOURCE
RQ3: Performance Depends on Task-Complexity

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?
RQ3: Performance Depends on Task-Complexity

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?

↩ Findings: Performance is not tied to academic discipline.
Findings: Performance is not tied to academic discipline but rather by the complexity of the input.

RQ3: Domain-Utility. Are LLMs better adapted for some subfields than others?

RQ3: Performance Depends on Task-Complexity
RQ3: Performance Depends on Task-Complexity

Recommendations:
- Validate on a small sample
- Weigh benefits with risks
- Move beyond Western studies
RQ4: *High-Quality* Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- *emotion-specific summarization*
 - CovidET (Zhan et al., 2022)

- *figurative language explanation*
 - FLUTE (Chakrabarty et al., 2022)

- *implied misinformation explanation*
 - Misinfo Reaction Frames (Gabriel et al., 2017)

- *hate speech explanation*
 - Social Bias Inference Corpus (Sap et al. 2020)

- *positive reframing*
 - Positive Psychology Frames (Ziems et al. 2022)
RQ4: **High-Quality Generation Results**

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- *emotion-specific summarization*
 - **CovidET** (Zhan et al., 2022)

- *figurative language explanation*
 - **FLUTE** (Chakrabarty et al., 2022)

- *implied misinformation explanation*
 - **Misinfo Reaction Frames** (Gabriel et al., 2017)

- *hate speech explanation*
 - **Social Bias Inference Corpus** (Sap et al. 2020)

- *positive reframing*
 - **Positive Psychology Frames** (Ziems et al. 2022)
RQ4: **Functionality.** Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- emotion-specific summarization
 - CovidET (Zhan et al., 2022)
- figurative language explanation
 - FLUTE (Chakrabarty et al., 2022)
- implied misinformation explanation
 - Misinfo Reaction Frames (Gabriel et al., 2017)
- hate speech explanation
 - Social Bias Inference Corpus (Sap et al. 2020)
- positive reframing
 - Positive Psychology Frames (Ziems et al. 2022)
RQ4: **High-Quality Generation Results**

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- **emotion-specific summarization**
 - CovidET (Zhan et al., 2022)

- **figurative language explanation**
 - FLUTE (Chakrabarty et al., 2022)

- **implied misinformation explanation**
 - Misinfo Reaction Frames (Gabriel et al., 2017)

- **hate speech explanation**
 - Social Bias Inference Corpus (Sap et al. 2020)

- **positive reframing**
 - Positive Psychology Frames (Ziems et al. 2022)
RQ4: **High-Quality** Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- *emotion-specific summarization*
 - CovidET (Zhan et al., 2022)

- *figurative language explanation*
 - FLUTE (Chakrabarty et al., 2022)

- *implied misinformation explanation*
 - Misinfo Reaction Frames (Gabriel et al., 2017)

- *hate speech explanation*
 - Social Bias Inference Corpus (Sap et al. 2020)

- *positive reframing*
 - Positive Psychology Frames (Ziems et al. 2022)
RQ4: **High-Quality Generation Results**

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

- **emotion-specific summarization**
 - CovidET (Zhan et al., 2022)

- **figurative language explanation**
 - FLUTE (Chakrabarty et al., 2022)

- **implied misinformation explanation**
 - Misinfo Reaction Frames (Gabriel et al., 2017)

- **hate speech explanation**
 - Social Bias Inference Corpus (Sap et al. 2020)

- **positive reframing**
 - Positive Psychology Frames (Ziems et al. 2022)
RQ4: **High-Quality Generation Results**

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

Findings: zero-shot GPT-4 produces *helpful and informative generations* in all five evaluation tasks.
RQ4: High-Quality Generation Results

RQ4: Functionality. Are prompted LLMs useful for generatively implementing theories and explaining social scientific constructs with text?

Findings: zero-shot GPT-4 produces *helpful and informative generations* in all five evaluation tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>COVID Aspect Summarization</th>
<th>Misinformation Explanation</th>
<th>Figurative Language</th>
<th>Hate Speech Explanation</th>
<th>Positive Reframing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>CDC Comm. Specialist</td>
<td>Public Policy Grad Student</td>
<td>Grammarly Writing Expert</td>
<td>Journalism Degree</td>
<td>Psychology Degree</td>
</tr>
</tbody>
</table>
RQ4: **High-Quality Generation Results**

RQ4: **Functionality.**

→ **Findings:** zero-shot GPT-4 *beats* reference levels of:

- Faithfulness

<table>
<thead>
<tr>
<th>Task</th>
<th>COVID Aspect Summarization</th>
<th>Misinformation Explanation</th>
<th>Figurative Language</th>
<th>Hate Speech Explanation</th>
<th>Positive Reframing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>CDC Comm. Specialist</td>
<td>Public Policy Grad Student</td>
<td>Grammarly Writing Expert</td>
<td>Journalism Degree</td>
<td>Psychology Degree</td>
</tr>
</tbody>
</table>
RQ4: **High-Quality Generation Results**

RQ4: **Functionality.**

→ **Findings:** zero-shot GPT-4 *beats* reference levels of:

- Faithfulness
- Relevance

<table>
<thead>
<tr>
<th>Task</th>
<th>COVID Aspect Summarization</th>
<th>Misinformation Explanation</th>
<th>Figurative Language</th>
<th>Hate Speech Explanation</th>
<th>Positive Reframing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>CDC Comm. Specialist</td>
<td>Public Policy Grad Student</td>
<td>Grammarly Writing Expert</td>
<td>Journalism Degree</td>
<td>Psychology Degree</td>
</tr>
</tbody>
</table>
RQ4: High-Quality Generation Results

RQ4: Functionality.

→ Findings: zero-shot GPT-4 beats reference levels of:

- Faithfulness
- Relevance
- Coherence

Diagram:

- Positive Reframing
- Figurative Language

Table:

<table>
<thead>
<tr>
<th>Task</th>
<th>COVID Aspect Summarization</th>
<th>Misinformation Explanation</th>
<th>Figurative Language</th>
<th>Hate Speech Explanation</th>
<th>Positive Reframing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>CDC Comm. Specialist</td>
<td>Public Policy Grad Student</td>
<td>Grammarly Writing Expert</td>
<td>Journalism Degree</td>
<td>Psychology Degree</td>
</tr>
</tbody>
</table>
RQ4: **High-Quality Generation Results**

RQ4: Functionality.

→ **Findings:** zero-shot GPT-4 beats reference levels of:

- Faithfulness
- Relevance
- Coherence
- Fluency

<table>
<thead>
<tr>
<th>Task</th>
<th>COVID Aspect Summarization</th>
<th>Misinformation Explanation</th>
<th>Figurative Language</th>
<th>Hate Speech Explanation</th>
<th>Positive Reframing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>CDC Comm. Specialist</td>
<td>Public Policy Grad Student</td>
<td>Grammarly Writing Expert</td>
<td>Journalism Degree</td>
<td>Psychology Degree</td>
</tr>
</tbody>
</table>
Discussion

CSS Challenges for LLMs:

1. Subtle expert taxonomies
2. Size of the target label space
3. Structural parsing
4. Temporal grounding
Discussion

Recommendations:

1. Integrate LLMs in the loop to transform large-scale data labeling
2. Consider open-source LLMs for classification
3. Reinvest in expert annotation
Can Large Language Models Transform Computational Social Science?

Caleb Ziems†*, William Held✦*, Omar Shaikh†*, Jiaao Chen✦*, Zhehao Zhang‡*, Diyi Yang†

* All heavily contributed to the implementation of this work
RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

White House Ousts Top Climate Change Official

Which of the following describes the above news headline?

A: Misinformation
B: Trustworthy

Constraint: Answer with only the option above that is most accurate and nothing else.
RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

Which of the following describes the above news headline?

A: Misinformation
B: Trustworthy

Constraint: Answer with only the option above that is most accurate and nothing else.
RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

Which of the following describes the above news headline?

A: Misinformation
B: Trustworthy

Constraint: Answer with only the option above that is most accurate and nothing else.
RQ1: **Viability.** Can LLMs augment the human annotation pipeline?

Which of the following describes the above news headline?

A: Misinformation
B: Trustworthy

Constraint: Answer with only the option above that is most accurate and nothing else.