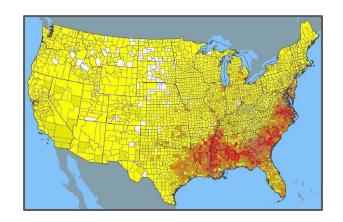
VALUE:

Understanding Dialect Disparity in NLU

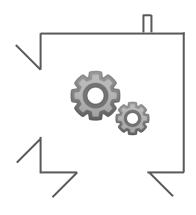
Caleb Ziems, Jiaao Chen, Camille Harris, Jessica Anderson, Diyi Yang

VernAcular Language Understanding Evaluation: Understanding Dialect Disparity in NLU

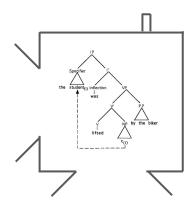
Caleb Ziems, Jiaao Chen, Camille Harris, Jessica Anderson, Diyi Yang



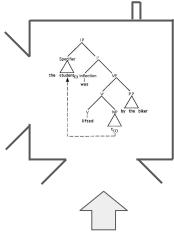
Motivation: Dialect Disparity

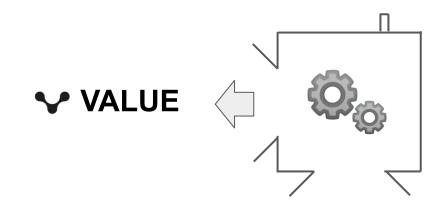


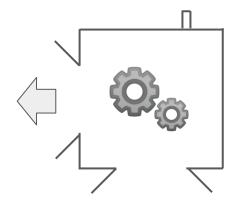
- Dependency Parsing (<u>Blodgett et al., 2018</u>)
- Language ID (<u>Jurgens et al., 2017</u>)
- POS Tagging (<u>Jørgensen et al., 2016</u>)


What about more general NLU?




Dialect Stress Test

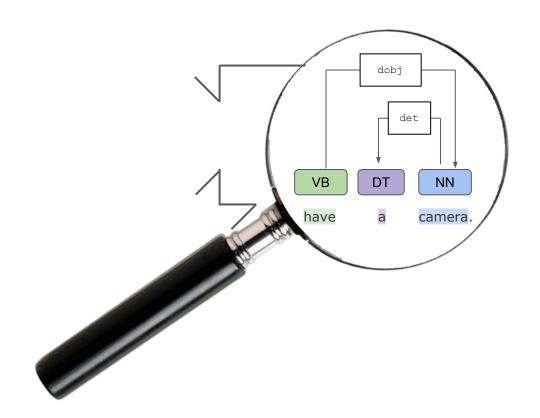



Natural Language Inference MNLI, QNLI, RTE

Linguistic Acceptability
CoLA

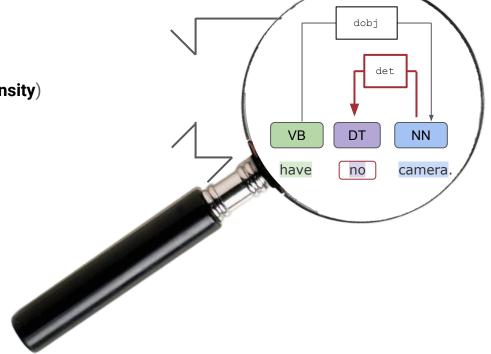
Paraphrase / Similarity STS-B, QQP

Sentiment Analysis SST-2



Advantages:

1. Interpretable (not black-box)

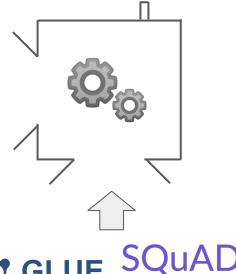

Advantages:

1. Interpretable

2. Flexible

(not black-box)

(tunable **feature-density**)



Advantages:

Interpretable (not black-box)

Flexible (tunable feature-density)

Scalable (mix + match datasets)

Advantages:

1. Interpretable

2. Flexible

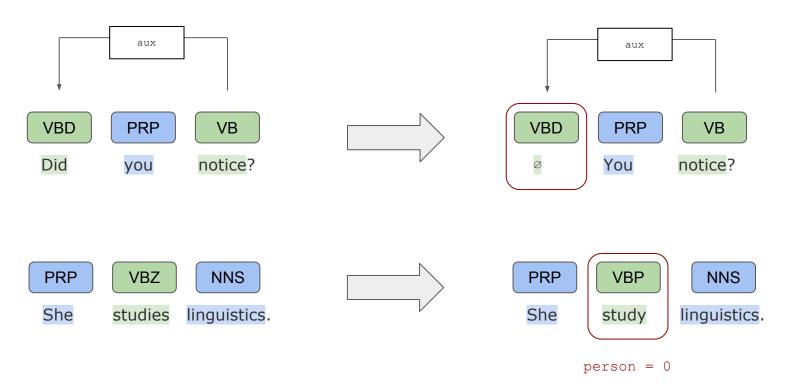
3. Scalable

4. Responsible

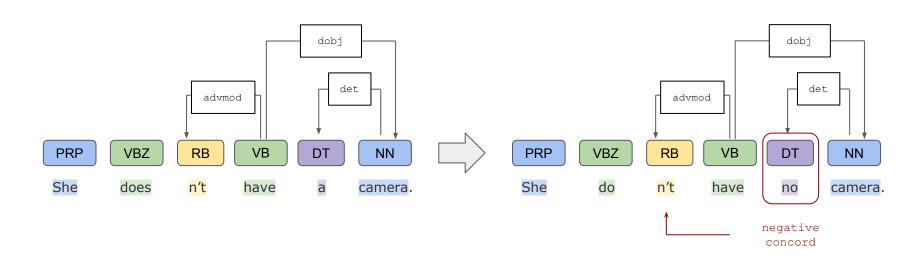
(not black-box)

(tunable feature-density)

(mix + match datasets)


(participatory design)

Project Outline


- 1. Transform: Construct VALUE
- 2. Validate: Participatory Design and Gold-Standard
- 3. Benchmark: Test models on VALUE

1. Transform: Morphosyntax

1. Transform: Morphosyntax

Negative concord: AAVE speakers can use two negative morphemes to communicate a single negation.

1. Transform: Morphosyntax

Morphosyntactic Transformations:

```
auxiliary dropping · completive done / remote time been · existential it · future gonna · immediate future finna · have/got · inflection · negative concord · negative inversion · null complementizers · null genitives
```

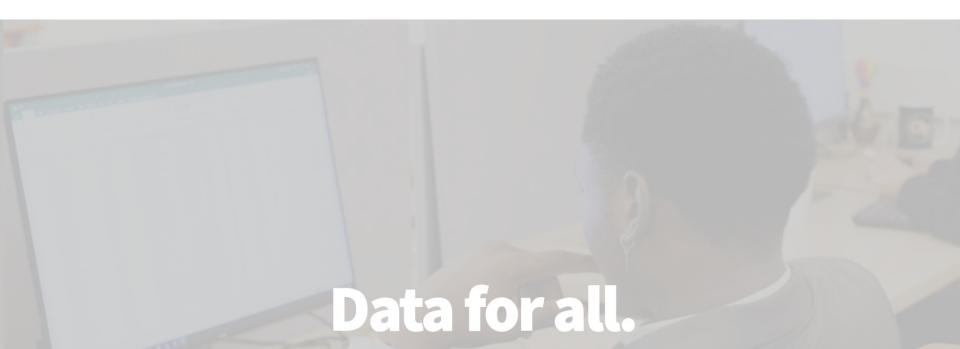
1. Transform: Lexicon

Lexical Mapping: (one-to-many) [1]

- 1. Train word2vec on: TwitterAAE dataset (Blodgett et al. 2016)
- 2. Linguistic code axis: $\mathbf{c} = \sum_{(\mathbf{x_i}, \mathbf{y_i}) \in S} \frac{\mathbf{x_i} \mathbf{y_i}}{|S|}$
- 3. Rank candidate word pairs by:

$$\cos\left(\mathbf{c}, \mathbf{w_i} - \mathbf{w_j}\right)$$

4. Hand-filter any semantically unequal words


SAE	AAVE
arguing	beefing, beefin, arguin
anymore	nomore, nomo
brother	homeboy
classy	fly
dude	n*ggah, manee, n*gga
huge	bigass
probably	prob, prolly, def, probly, deff
rad	dope
remember	rememba
screaming	screamin, yellin, hollering
sister	sista, sis
these	dese, dem
with	wit

^[1] Shoemark, P., Kirby, J., & Goldwater, S. (2018, November). <u>Inducing a lexicon of sociolinguistic variables from code-mixed text</u>. In *Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text* (pp. 1-6).

User-Centered Validation Protocol

Georgia College of Tech Computing

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can happen

Data for all.

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can happen

Understanding:

We have highlighted certain portions of **Sentence (2)** that are different in **Sentence (1)**. Do the words and the order of the words in **Sentence (1)** look like something you could reasonably say in AAVE?

Yes

O No

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can happen

Understanding:

We have highlighted certain portions of **Sentence (2)** that are different in **Sentence (1)**. Do the words and the order of the words in **Sentence (1)** look like something you could reasonably say in AAVE?

Yes

If anything is confusing or strange, please let us know which of the

O No

highlighted segments were changed in a way that doesn't make sense

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can nappen

Understanding:

We have highlighted certain portions of **Sentence (2)** that are different in **Sentence (1)**. Do the words and the order of the words in **Sentence (1)** look like something you could reasonably say in AAVE?

Yes

If anything is confusing or strange, please let us know which of the

O No

highlighted segments were changed in a way that doesn't make sense

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can happen

Rephrasing: (Gold Standard)

If possible, please provide a revised or alternative rephrasing of **Sentence (1)** that would be acceptable in the AAVE dialect. If no change is possible, leave this blank.

User-Centered Validation Protocol

Sentence (1): can't nothing good happen

Sentence (2): nothing good can happen

Social Context:

If someone said this in your community, would it be (1) not very cool, (5) a bit sensitive, (7) passing, or (10) cool?

User-Centered Validation Protocol

Transformation	Accuracy (Maj. Vote)	Accuracy (Unanimous)	Size n
Ass constructions	_	-	-
Auxiliaries	96.6	77.4	638
Been / done	95.4	72.7	670
Existential dey/it	91.4	57.9	304
Gonna / finna	95.4	78.7	197
Have / got	96.2	84.8	290
Inflection	97.1	82.3	761
Negative concord	95.9	73.6	584
Negative inversion	95.0	69.3	101
Null genitives	97.9	85.3	573
Relative clause structures	94.1	58.3	489

	Test 🔁		AAVE	AAVE
U Train		(GLUE)	(Synthetic)	(Gold)
GLUE: CoLA				
GLUE: MNLI				
GLUE: QNLI				
GLUE: RTE				
GLUE: SST-2				
GLUE: STS-B				
GLUE: QQP				

Test ☐ Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
GLUE: CoLA	56.3		
GLUE: MNLI	83.6		
GLUE: QNLI	92.8		
GLUE: RTE	66.4		
GLUE: SST-2	94.6		
GLUE: STS-B	89.4		
GLUE: QQP	90.9		

Tes Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
GLUE: CoLA	56.3	55.6	
GLUE: MNLI	83.6	82.5	
GLUE: QNLI	92.8	91.4	
GLUE: RTE	66.4	67.8	
GLUE: SST-2	94.6	92.4	
GLUE: STS-B	89.4	88.5	
GLUE: QQP	90.9	89.5	

Test ☐ Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
GLUE: CoLA	56.3	55.6	-
GLUE: MNLI	83.6	82.5	82.1
GLUE: QNLI	92.8	91.4	91.2
GLUE: RTE	66.4	67.8	67.6
GLUE: SST-2	94.6	92.4	92.0
GLUE: STS-B	89.4	88.5	88.2
GLUE: QQP	90.9	89.5	89.2

Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
GLUE: CoLA	56.3	55.6	-
GLUE: MNLI	83.6	82.5	82.1
GLUE: QNLI	92.8	91.4	91.2
GLUE: RTE	66.4	67.8	67.6
GLUE: SST-2	94.6	92.4	92.0
GLUE: STS-B	89.4	88.5	88.2
GLUE: QQP	90.9	89.5	89.2

Test →	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
_	,		(Gold)
AAVE: CoLA (Synth)		55.6	-
AAVE: MNLI (Synth)	83.6	82.5	82.1
AAVE: QNLI (Synth)	92.8	91.4	91.2
AAVE: RTE (Synth)	66.4	67.8	67.6
AAVE: SST-2(Synth)	94.6	92.4	92.0
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2

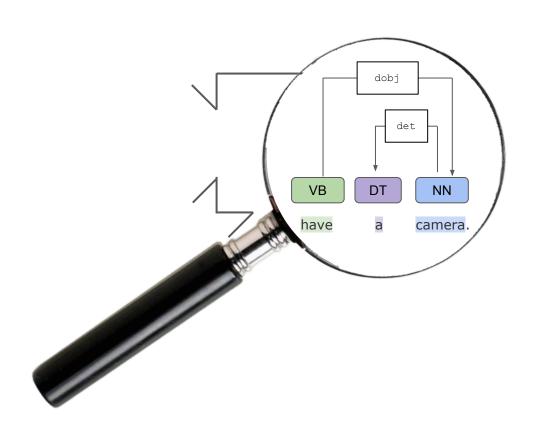
Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6	82.5	82.1
AAVE: QNLI (Synth)	92.8	91.4	91.2
AAVE: RTE (Synth)	66.4	67.8	67.6
AAVE: SST-2(Synth)	94.6	92.4	92.0
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2

Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8	91.4	91.2
AAVE: RTE (Synth)	66.4	67.8	67.6
AAVE: SST-2(Synth)	94.6	92.4	92.0
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2

Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8 92.5	91.4 91.8	91.2 91.8
AAVE: RTE (Synth)	66.4	67.8	67.6
AAVE: SST-2(Synth)	94.6	92.4	92.0
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2

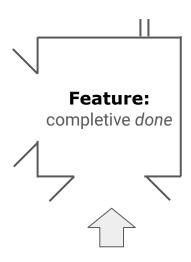
Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8 92.5	91.4 91.8	91.2 91.8
AAVE: RTE (Synth)	66.4 67.1	67.8 66.1	67.6 67.3
AAVE: SST-2(Synth)	94.6	92.4	92.0
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2

Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8 92.5	91.4 91.8	91.2 91.8
AAVE: RTE (Synth)	66.4 67.1	67.8 66.1	67.6 67.3
AAVE: SST-2(Synth)	94.6 94.0	92.4 93.0	92.0 92.8
AAVE: STS-B(Synth)	89.4	88.5	88.2
AAVE: QQP (Synth)	90.9	89.5	89.2


Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8 92.5	91.4 91.8	91.2 91.8
AAVE: RTE (Synth)	66.4 67.1	67.8 66.1	67.6 67.3
AAVE: SST-2(Synth)	94.6 94.0	92.4 93.0	92.0 92.8
AAVE: STS-B(Synth)	89.4 88.8	88.5 88.3	88.2 88.3
AAVE: QQP (Synth)	90.9	89.5	89.2

37

Test → Train	SAE (GLUE)	AAVE (Synthetic)	AAVE (Gold)
AAVE: CoLA (Synth)	56.3 56.2	55.6 55.8	-
AAVE: MNLI (Synth)	83.6 83.1	82.5 83.5	82.1 82.3
AAVE: QNLI (Synth)	92.8 92.5	91.4 91.8	91.2 91.8
AAVE: RTE (Synth)	66.4 67.1	67.8 66.1	67.6 67.3
AAVE: SST-2(Synth)	94.6 94.0	92.4 93.0	92.0 92.8
AAVE: STS-B(Synth)	89.4 88.8	88.5 88.3	88.2 88.3
AAVE: QQP (Synth)	90.9 90.3	89.5 89.6	89.2 89.6


38

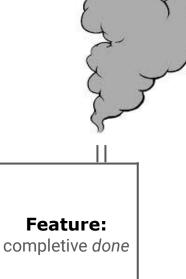
Perturbation Analysis (MNLI)

Perturbation Analysis (MNLI)

Detroit Pistons they're not as good as they were last year

Detroit Pistons played better last year

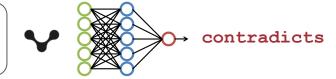
Perturbation Analysis (MNLI)


Detroit Pistons they're not as good as they were last year

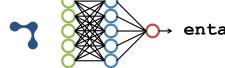
Detroit Pistons **done** played better last year

Detroit Pistons they're not as good as they were last year

Detroit Pistons played better last year



Perturbation Analysis (MNLI)


Detroit Pistons they're not as good as they were last year

Detroit Pistons **done** played better last year

Detroit Pistons they're not as good as they were last year

Detroit Pistons played better last year

- 1. **VALUE** should not be considered natural AAVE
 - → Exaggerated feature density [stress test]
 - → Lacks social nuance

- 1. **VALUE** should not be considered natural AAVE
 - → Exaggerated feature density [stress test]
 - → Lacks social nuance
- 2. \Rightarrow Speech \neq orthography \land

- 1. **VALUE** should not be considered natural AAVE
 - → Exaggerated feature density [stress test]
 - → Lacks social nuance
- 2. \Rightarrow Speech \neq orthography \land
- 3. Synthetic test performance ≠ real-world readiness

- 1. **VALUE** should not be considered natural AAVE
 - → Exaggerated feature density [stress test]
 - → Lacks social nuance
- 2. \Rightarrow Speech \neq orthography \land
- 3. Synthetic test performance ≠ real-world readiness
- 4. Misuse: hateful speech and appropriation

4. Conclusion: Contributions

- Transform: Construct VALUE { Flexible, Scalable }
- 2. Validate: Participatory Design { Responsible }
- 3. **Benchmark:** Test models on VALUE { Interpretable }

- 1. **Extend Scope:** Consider other tasks
- 2. **Extend Impact:** Reach other dialects

- 1. **Extend Scope:** Consider other tasks
- 2. **Extend Impact:** Reach other dialects

You like NLP?

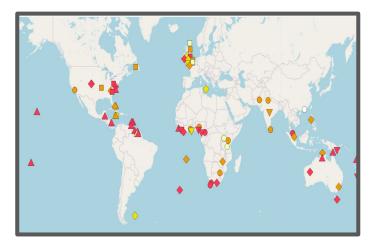
You get the point?

feature: No inversion / no auxiliaries in main clause yes/no questions

pervasive in: Colloquial AE, IrE, IE, SgE

source:

https://ewave-atlas.org/parameters/229#2/7.0/7.9


- 1. **Extend Scope:** Consider other tasks
- 2. **Extend Impact:** Reach other dialects

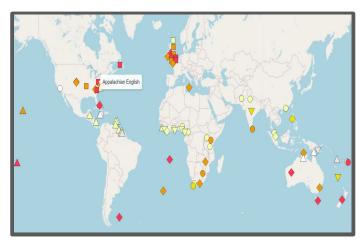
y'all

you'uns

feature: Variants of the second-person pronoun

pervasive in: Colloquial AE, AppE, AusE

source:


https://ewave-atlas.org/parameters/229#2/7.0/7.9

- 1. **Extend Scope:** Consider other tasks
- 2. **Extend Impact:** Reach other dialects

Us kids used to pinch the sweets like hell.

feature: us + NP in subject function

pervasive in: AppE

source:

https://ewave-atlas.org/parameters/229#2/7.0/7.9

- 1. **Extend Scope:** Consider other tasks
- 2. **Extend Impact:** Reach other dialects
- 3. **Build:** Dialect-Aware NLP systems

VALUE:

Understanding Dialect Disparity in NLU

Caleb Ziems, Jiaao Chen, Camille Harris, Jessica Anderson, Diyi Yang

